A Two-Grid Finite Difference Scheme for Nonlinear Parabolic Equations
نویسندگان
چکیده
We present a two level nite di erence scheme for the approximation of nonlinear parabolic equations. Discrete inner products and the lowest order Raviart-Thomas approximating space are used in the expanded mixed method in order to develop the nite di erence scheme. Analysis of the scheme is given assuming an implicit time discretization. In this two level scheme, the full nonlinear problem is solved on a \coarse" grid of size H: The nonlinearities are expanded about the coarse grid solution and an appropriate interpolation operator is used to provide values of the coarse grid solution on the ne grid in terms of superconvergent node points. The resulting linear but nonsymmetric system is solved on a \ ne" grid of size h: Some a priori error estimates are derived which show that the discrete L(L) and L(H) errors are O(h +H d=2 + t), where d 1 is the spatial dimension.
منابع مشابه
A High Order Finite Dierence Method for Random Parabolic Partial Dierential Equations
In this paper, for the numerical approximation of random partial differential equations (RPDEs) of parabolic type, an explicit higher order finite difference scheme is constructed. In continuation the main properties of deterministic difference schemes, i.e. consistency, stability and convergency are developed for the random cases. It is shown that the proposed random difference scheme has thes...
متن کاملA Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملA Two { Grid Finite Difference Scheme for Nonlinearparabolic Equations Clint
We present a two level nite diierence scheme for the approximation of nonlinear parabolic equations. Discrete inner products and the lowest order Raviart-Thomas approximating space are used in the expanded mixed method in order to develop the nite diierence scheme. Analysis of the scheme is given assuming an implicit time discretization. In this two level scheme, the full nonlinear problem is s...
متن کاملAnalysis of Two-Grid Methods for Nonlinear Parabolic Equations by Expanded Mixed Finite Element Methods
In this paper, we present an efficient method of two-grid scheme for the approximation of two-dimensional nonlinear parabolic equations using an expanded mixed finite element method. We use two Newton iterations on the fine grid in our methods. Firstly, we solve an original nonlinear problem on the coarse nonlinear grid, then we use Newton iterations on the fine grid twice. The two-grid idea is...
متن کاملA numerical scheme for solving nonlinear backward parabolic problems
In this paper a nonlinear backward parabolic problem in one dimensional space is considered. Using a suitable iterative algorithm, the problem is converted to a linear backward parabolic problem. For the corresponding problem, the backward finite differences method with suitable grid size is applied. It is shown that if the coefficients satisfy some special conditions, th...
متن کامل